Measuring covariation in RNA alignments: physical realism improves information measures
نویسندگان
چکیده
MOTIVATION The importance of non-coding RNAs is becoming increasingly evident, and often the function of these molecules depends on the structure. It is common to use alignments of related RNA sequences to deduce the consensus secondary structure by detecting patterns of co-evolution. A central part of such an analysis is to measure covariation between two positions in an alignment. Here, we rank various measures ranging from simple mutual information to more advanced covariation measures. RESULTS Mutual information is still used for secondary structure prediction, but the results of this study indicate which measures are useful. Incorporating more structural information by considering e.g. indels and stacking improves accuracy, suggesting that physically realistic measures yield improved predictions. This can be used to improve both current and future programs for secondary structure prediction. The best measure tested is the RNAalifold covariation measure modified to include stacking. AVAILABILITY Scripts, data and supplementary material can be found at http://www.binf.ku.dk/Stinus_covariation
منابع مشابه
Bioinformatical approaches to RNA structure prediction
Motivation: The importance of non-coding RNAs is becoming increasingly evident, andoften the functionof thesemoleculesdepends on the structure. It is common to use alignments of related RNA sequences to deduce the consensus secondary structure by detecting patterns of co-evolution. A central part of such an analysis is to measure covariation between two positions in an alignment. Here, we rank ...
متن کاملIdentifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation
BACKGROUND There is currently no way to verify the quality of a multiple sequence alignment that is independent of the assumptions used to build it. Sequence alignments are typically evaluated by a number of established criteria: sequence conservation, the number of aligned residues, the frequency of gaps, and the probable correct gap placement. Covariation analysis is used to find putatively i...
متن کاملRNA-RNA interaction prediction based on multiple sequence alignments
MOTIVATION Many computerized methods for RNA-RNA interaction structure prediction have been developed. Recently, O(N(6)) time and O(N(4)) space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes. However, few of these methods incorporate the knowledge concerning related sequences, thus relevant evolutionary information is of...
متن کاملConsensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics.
Facing the ever-growing list of newly discovered classes of functional RNAs, it can be expected that further types of functional RNAs are still hidden in recently completed genomes. The computational identification of such RNA genes is, therefore, of major importance. While most known functional RNAs have characteristic secondary structures, their free energies are generally not statistically s...
متن کاملProtein Sequence Alignment Analysis by Local Covariation: Coevolution Statistics Detect Benchmark Alignment Errors
The use of sequence alignments to understand protein families is ubiquitous in molecular biology. High quality alignments are difficult to build and protein alignment remains one of the largest open problems in computational biology. Misalignments can lead to inferential errors about protein structure, folding, function, phylogeny, and residue importance. Identifying alignment errors is difficu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2006